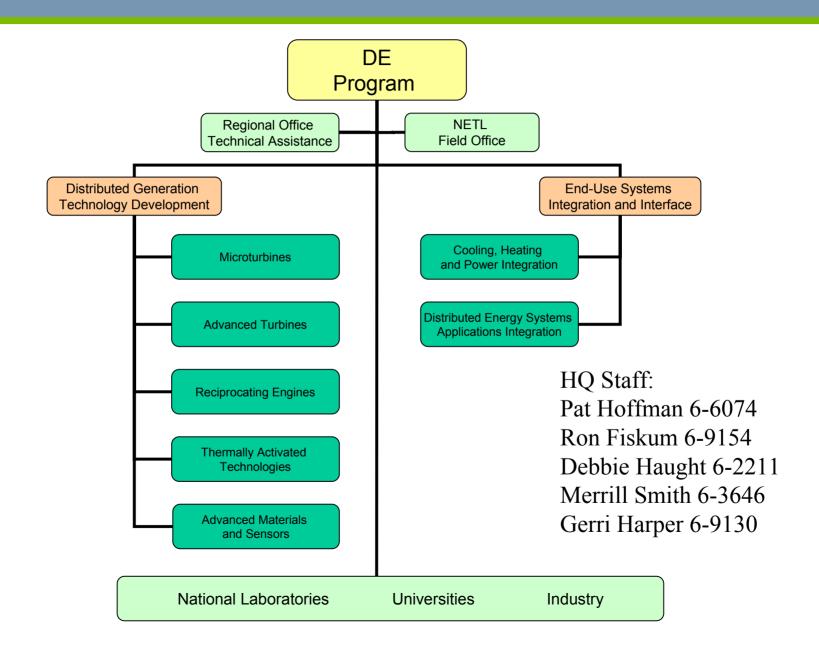


Distributed Energy Program


Patricia Hoffman
Acting Program Manager
U.S. Department of Energy

December 2, 2003

Distributed Energy Peer Review

Distributed Energy Program

Goal #1

By 2008, DER will complete development and testing of a portfolio of distributed generation and thermally activated technologies that will show an average of **25 percent increase in efficiency** (compared to 2000 baseline) with **NOx emissions of less than 0.15grams/KWh** at an **equivalent of 10% reduction in cost**.

Efficiency/Emissions

- Advanced alloys/Ceramics
- HCCI/Organic rankine cycle
- Laser Ignition/Catalytic combustion

Volume/Cost Reduction

- Advanced materials
- Heat exchangers
- Advanced designs

Generation

- Turbines
- Engines

Thermally Activated,

- Desiccants
- Heat and Mass Transfer

Government

Technology Development

Partnership

<u>Industry</u>

Systems Integration

Goal #2

By 2008, demonstrate the feasibility of **integrated systems in three new customer classes**, which could achieve **70% efficiency** and customer **payback in less than 4 years**, assuming commercial scale production.

Technologies

- CHP packaged
 Systems
- Sensors, controls and electronics

Applications

- Demand-control Ventilation
- Integrated energy services
 - Heat/Cooling (processing)
 - Electricity
 - Temperature
 - Humidity
- Industrial & Light Industrial, Hotels, Data Centers, Merchant
- Utility ?

<u>Government</u> Technology

Development

<u>Industry</u>

Systems Integration

ZI ALESO FINA

Goal/Secretarial Milestones

The Distributed Energy Program's goal is to develop and deploy a diverse array of integrated distributed generation and thermal energy technologies at market competitive prices so that homes businesses, industry, communities and electricity companies elect to use them. This will help the Nation by increasing the efficiency of electric generation, delivery and use.

- Annual milestones in the Congressional Budget
 - FY2003 results
 - Completed 4000 hour field test of ceramic composites in industrial gas turbines
 - Complete 12 beta field test of high efficiency natural gas-fired heat pumps (chiller precursor technology)
 - Contracted with three companies to research a 5 percentage point increase in efficiency for an industrial microturbine
 - FY2004
 - Complete final design and initiate testing of a low emissions technology with <7 ppm NOx
 - Complete and demonstrate (1.4 COP) commercial introduction thermally activated heat pump
 - Demonstrate 6 percentage point increase in efficiency for a reciprocating engine
 - Complete final design and initiate field testing for a fully functional integrated CHP system (turbine, absorption chiller and control system)
 - FY2005 (proposed)
 - Demonstrate NOx emissions levels of 0.25 lbs/MWh from catalytic combustion
 - Complete case study on a chp installation that uses heat from a microturbine to provide plate tank heating and sludge drying at an industrial facility
 - Complete two projects within the high tech industry

Office of Management and Budget (OMB)

- Program Assessment and Rating Tool (PART)
 - DE scored a 68 out of 100
- Budget examiner has expressed concern over
 - Yearly metrics vs yearly progress
 - Gas turbine activities and the reciprocating engine activities

OMB PART Metrics

• Microturbine Efficiency

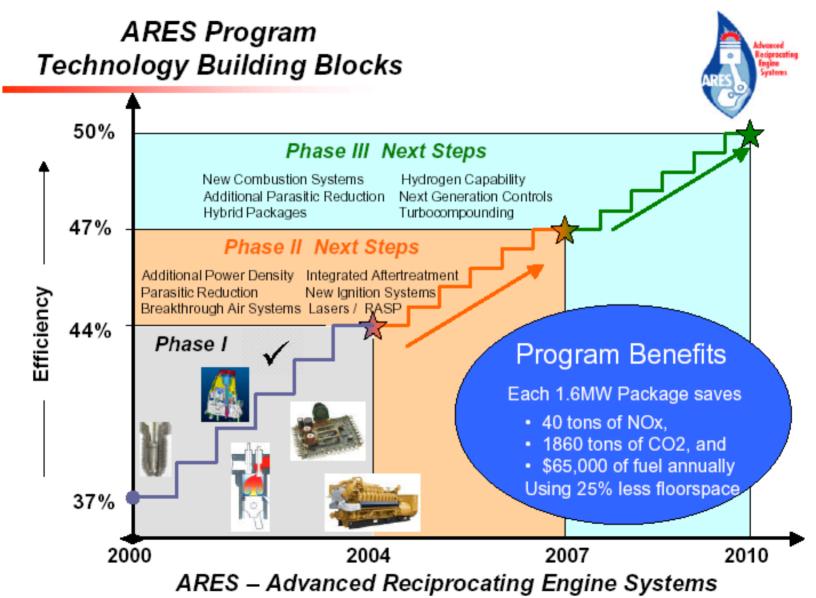
	Target	Actual
2000	28%	28%
2001	28%	28%
2002	28%	28%
2003	33%	33%
2004	33%	
2005	35%	
2006	35%	
2007	35%	
2008	37%	

 Microturbine NOx Emissions (lbs/MWh)

	Target	Actual
2000	0.7	0.7
2001	0.7	0.7
2002	0.7	0.5
2003	0.4	0.33
2004	0.4	
2005	0.3	
2006	0.3	
2007	0.3	
2008	0.15	

OMB PART Metrics

• Reciprocating Engine Efficiency


	Target	Actual
2000	36%	36%
2001	38%	38%
2002	38%	39%
2003	38%	42%
2004	43%	
2005	44%	
2006	44%	
2007	46%	
2008	47%	

 Reciprocating Engine NOx Emissions (lbs/MWh)

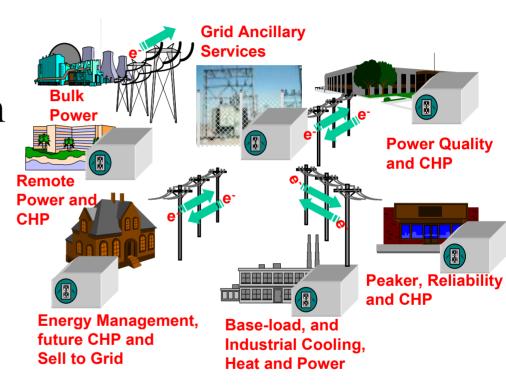
	Target	Actual
2000	3.1	3.1
2001	3.1	3.1
2002	3.1	3.1
2003	1.5	1.5
2004	1.5	
2005	1.5	
2006	1.5	
2007	0.75	
2008	0.75	

ARES Program Goals

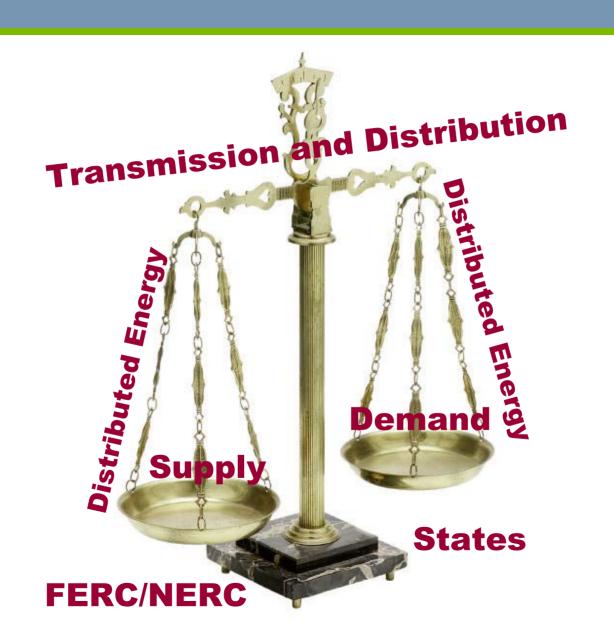
DER Funding Summary

(\$M)

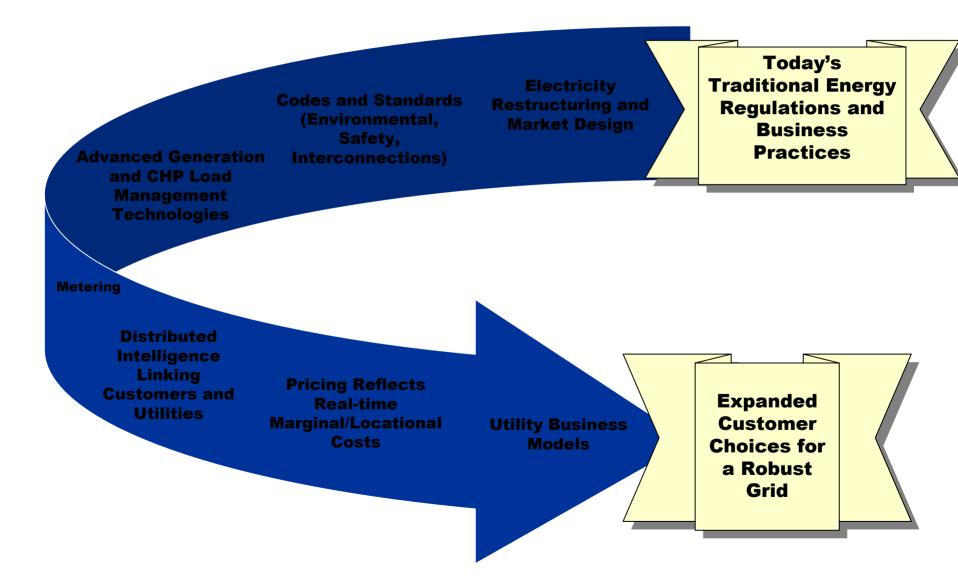
Program Element	Fiscal Year 2003	Fiscal Year 2004		
INTERIOR				
Industrial Gas Turbines	5.0	4.0		
Microturbines	7.0	7.0		
Reciprocating Engines	12.0	14.0		
Technology Base	8.26	8.26		
Thermally Activated Technologies	7.66	7.66		
Fuel Flexibility (oil)	0.750	(0.500 -move to Bldgs)		
Industrial DG/High Tech/Controls	8.34	8.34		
Packaged Systems R&D/CHP	12.0	12.0		
TOTAL INTERIOR	61.01	61.26		


Issues:

- -0.42% general reduction
- -0.646% committee reduction
- -corporate activities (analysis including gpra, communications etc) ~10%
- -Earmark American Gas Foundation National Accounts


The Distributed Energy Vision

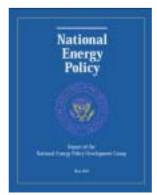
- Distributed energy provides utilities and customers with tools in managing supply and demand.
 - Positive recognition among the utilities
 - Greater customer penetration
 - Clear "rules of the road"



Balancing Act

Pathway to an Integrated Energy System

Expectations


- Iron out metrics/milestones
- Focus regionally on policies/rules that are working – Regional Offices/State program
- Focus new analysis on New York State and the PJM region
- Solidify relationships with OETD and OEA

U.S. Department of Energy

- Distributed Energy Program
 - Office Energy Efficiency and Renewable Energy
 - Small generation/cooling, heating and power technologies
 - State Support
 - Support OETD (limited distribution support)
 - Customer focus
 - C&I
 - Residential
 - Utilities?
 - Budget: House- \$64.284 M
 - Senate- \$57.534 M

- Office of Electric Transmission and Distribution
 - Direct Report to the UnderSecretary of Energy
 - Focus on Transmission and Distribution
- Policy
 - Lead on Blackout Investigation
 - Grid Technologies (superconductivity, storage, interconnection)
 - Budget: House- \$73.616 M
 - Senate-\$92.838 M

OETD Vision and Roadmap

Information Clearinghouse and Networking

New look coming soon

www.eere.energy.gov/der

- Technical publications
- Workshops and conferences
- Technology planning
- Cost-shared RD&D
- Solicitation announcements
- P Distributed Energy Peer Review- December 2-4 2003, Washington DC
- 4th Annual Microturbine Applications Workshop – January 20 – 22, 2004, Marina del Ray, CA